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Module 1: Analysis of Feedback Control Systems

1.2 Give the transfer function of the flexible joint G(s) in zpk format :

G(s) = 3654.6
s(s+ 43.33)(s2 + 6.82s+ 234.6)

1.3.1 Write the transfer function S between r and e as a function of Dc and G and give its
numerical values in zpk format.

S = E(s)
R(s) = 1

1 +KG
= s(s+ 43.33)(s2 + 6.82s+ 234.6)

(s+ 42.94)(s+ 3.273)(s2 + 3.928s+ 208)

1.3.2 Write the transfer function U between r and u as a function of Dc and G and give its
numerical values in zpk format.

U = U(s)
R(s) = K

1 +KG
= 8 · s(s+ 43.33)(s2 + 6.82s+ 234.6)

(s+ 42.94)(s+ 3.273)(s2 + 3.928s+ 208)

1.3.3 Write the transfer function T between r and y as a function of Dc and G and give its
numerical values in zpk format.

T = Y (s)
R(s) = KG

1 +KG
= 29′237

(s+ 42.94)(s+ 3.273)(s2 + 3.928s+ 208)

1.3.4 Write the transfer function V between w and y as a function of Dc and G and give its
numerical values in zpk format.

V = Y (s)
W (s) = G

1 +KG
= 3′654.6

(s+ 42.94)(s+ 3.273)(s2 + 3.928s+ 208)
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1.3.a Plot the step responses of the closed-loop system from reference signal to the output,
from reference signal to the control signal (plant input), from reference signal to the
tracking error signal (the input of the controller) and from disturbance signal to the
output. All plots in one figure with appropriate scale (Use a 2 by 2 subplot).

1.3.b Give the closed-loop poles.

• −42.9445

• −1.9641 + 14.2873i

• −1.9641− 14.2873i

• −3.2734

1.3.c Is the closed-loop system stable? Why?

The closed-loop system is stable because all the poles are located in the LHP.
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1.4 Compute the ultimate gain using the plot of rlocus command of Matlab. Validate
your result using the Routh stability criterion.

Using rlocus(G,17:0.01:19), we can define precisely the value of Ku.
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Ku ≈ 18.2

We can apply the Routh criterion on A(s) = s4 + 50.15 · s3 + 530.1 · s2 + 1.016 · 104 · s+ 3655 ·K.

Therfore a1 = 50.15 a2 = 530.1 a3 = 1.016 · 104 a4 = 3655 ·K

s4 1 a2 a4
s3 a1 a3 a5
s2 b1 b2 b3
s c1 c2
1 d1
0 0

b1 = −
det

∣∣∣∣∣ 1 a2
a1 a3

∣∣∣∣∣
a1

= 327.51 b2 = −
det

∣∣∣∣∣ 1 a4
a1 a5

∣∣∣∣∣
a1

= 3655 ·K

c1 = −
det

∣∣∣∣∣a1 a3
b1 b2

∣∣∣∣∣
b1

= −559.7 ·K + 1.016 · 104 c2 = −
det

∣∣∣∣∣a1 a5
b1 b3

∣∣∣∣∣
b1

= 0

d1 = −
det

∣∣∣∣∣b1 b2
c1 c2

∣∣∣∣∣
c1

= 3655 ·K e1 = −
det

∣∣∣∣∣c1 c2
d1 d2

∣∣∣∣∣
d1

= 0

The Routh Criterion says the following:

• 1 > 0

• a1 = 50.15 > 0

• b1 = 327.51 > 0

• c1 = −559.7 ·K + 1.016 · 104 > 0

• d1 = 3655 ·K > 0

Therefore, we can calculate the value the ultimate gain: Ku ≈ 18.1536.

The value correspond to the value calculated with the rlocus function in Matlab.
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1.5 Plot the step response of the closed-loop system (between r and y). Print the
rise-time, settling time and the overshoot (use stepinfo). Compute the closed-loop
bandwidth (use bandwidth). Plot the magnitude Bode diagram of the closed-loop
transfer function (use bodemag) and check the correctness of the bandwidth.

Using stepinfo and bandwidth gives us the following values:

• Risetime = 0.5742s

• Settlingtime = 1.4827s

• Overshoot = 0.3937s

• Bandwidth = 3.6610

The bode diagram of the system is:
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The bandwidth is defined for the value at which the system reaches the magnitude of −3dB. As a result, we
can confirm the previous value by zooming on the graph.

Module 2: PID Controller Design

2.1 ZN First method

2.1.1 Plot the step response of G from 0 to 0.5 s together with the asymptote (or the tangent
with the largest slope) for the first method of ZN.

The step response of G(s) is:
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2.1.2 Give the value of L and R.

The equation of the tangent is A(t) = 1.9620 · t+ 0.1153. Thus:

• R = 1.9620

• L = 0.1153

2.1.3 Give the parameters of the PID controller

The parameters are:

• Kp = 5.3046

• Ti = 0.2306

• Td = 0.0577

2.1.4 Is the closed-loop system stable with this PID controller?

The new transfer function is:

TPID = 0.005684 · s2 + 0.1232 · s+ 0.4272
5.052 · 10( − 6) · s5 + 0.0002548 · s4 + 0.002694 · s3 + 0.05734 · s2 + 0.1232 · s+ 0.4272

The system is stable because all of its poles belong to the LHP:

• −43.6554 + 0.0000i

• −2.2116 + 14.9773i
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• −2.2116− 14.9773i

• −1.0338 + 2.7079i

• −1.0338− 2.7079i

2.2 ZN Second method

2.2.1 Give the value of the ultimate gain and the ultimate period.

As calculated in question 1.4:

• Ku = 18.1536

• Pu = 0.348s ,measured with the plot of the step response of the system with Ku

2.2.2 Give the parameters of the PID controller

The parameters are:

• Kp = 10.892

• Ti = 0.174

• Td = 0.044

2.2.3 Plot the step response of the closed-loop system from the reference signal to the output

The step response of Y (s)
R(s) using these parameters is:
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2.2.4 Plot the step response of the closed-loop system from the disturbance signal to the
output.

The step response of Y (s)
W (s) using these parameters is:

2.3 Cascade Controller

2.3.1 Plot the step response of G1 and give the step information. From the step response,
estimate the steady-state gain, the damping factor and the natural frequency of an
approximate second-order model

G1(s) is defined as G(s) · s and its step response is the following:
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These are the specifications given by stepinfo:

• RiseT ime = 0.0873

• SettlingT ime = 1.1234

• SettlingMin = 0.2793

• SettlingMax = 0.5239

• Overshoot = 45.7139

• Undershoot = 0

• Peak = 0.5239

• PeakT ime = 0.2338

Graphically, we can estimate the steady state gain : Kss = 0.359.

Using the Peak and Kss values, we can calculate:

Mp = Peak −Kss

Kss
= 0.4593

and deduce the damping factor:

ζ =
√

ln2(Mp)
π2 + ln2(Mp)

= 0.2404
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Knowing the PeakTime, we can compute the Natural frequency:

ωn = π

PeakT ime ·
√

1− ζ2 = 13.843

2.3.2 Give the reference model for the inner loop. Give the PID controller parameters of
the inner loop.

Knowing that τm correspond to the inverse of the desired bandwidth (40rad/s), we can set the reference
model as

M(s) = 1
1 + τm · s

= 1
1 + 0.025 · s

Knowing that α = 1 is the amplitude of the applied step response, we can calculate : γ = Kss
α = Kss

The parameters of the PID controller with this model can be calculated as follow:

• kp = 2ζ
γωnτm

= 3.8696

• ki = 1
γτm

= 111.4206

• kd = 1
γω2

nτm
= 0.5814

2.3.3 Give the reference model for the outer loop. Give the proportional controller for the
outer loop.

Using the same procedure with a desired bandwidth of 4rad/s, we obtain:

• M(s) = 1
1+τm·s = 1

1+0.25·s

• kp = Dc(s) = 1
γτm

= 4

2.3.4 Give the transfer function between R and Y in terms of Dc, Dc’ and G. Give also the
transfer function with its numerical values in zpk format.

Tcascade = Y (s)
R(s) = DcD

′
cG1(s)

s+D′cG1(s) · s+DcD′cG1(s)
We know that D′c(S) can be computed as follow: D′c = kp + kd · s+ ki

s = 3.8696 + 0.5814 · s+ 111.4206
s . As a

result, we can calculate the numerical value and give its zpk format:

= 8499.2 · s5(s+ 43.33)2(s2 + 6.656 · s+ 191.6)(s2 + 6.82 · s+ 234.6)2

s5(s+ 43.33)2(s+ 4.446)(s2 + 7.492 · s+ 185)(s2 + 6.82 · s+ 234.6)2(s2 + 38.21 · s+ 1980)

2.3.5 Give the transfer function between W and Y in terms of Dc, Dc’ and G. Give also the
transfer function with its numerical values in zpk format.

We have the follwing calculated values:

• D′c = kp + kd · s+ ki
s = 3.8696 + 0.5814 · s+ 111.4206

s

• Dc = 4

Thus we have

Vcascade = Y (s)
W (s) = G1(s)

s+G1(s)D′c · s+DcD′cG1(s)

= 3654.6 · s5(s+ 43.33)2(s2 + 6.82 · s+ 234.6)2

s4(s+ 43.33)2(s+ 4.446)(s2 + 7.492 · s+ 185)(s2 + 6.82 · s+ 234.6)2(s2 + 38.21 · s+ 1980)
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2.3.6 Plot the closed-loop output for tracking a step reference signal for the cascade controller
and the ZN controller in the same figure. Plot the closed-loop output for the rejection
of a step disturbance for the cascade controller and the ZN controller in the same
figure.

As shown below, the response of the system to a step reference input using the ZN and the Cascade controller:

As shown below, the rejection of the system to a step disturbance using the ZN and the Cascade controller:
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Module 3: Loop Shaping Method

3.1 Proportional controller

3.1.1 Give the value of kP and explain how you compute it from the Bode diagram of G. Give
the values of gain margin and phase margin using the Bode diagram of the open-loop
transfer function. Check your results using the command margin of Matlab.

We want to design a controller such that the crossover frequency is 6 rad/s. We start by drawing the Bode
diagram:
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Using the Data Cursor tool, we can see that at 6 rad/s, the amplitude is 23.3 dB under the zero axis. As a
result, we need to design kp such that it lifts the plot 23.3 dB upper.

We need to solve te following equation:

20 · log10(kp) = 23.3⇒ kp = 10
23.3
20 ≈ 14.62

We can now recompute the Bode diagram in order to control our results and measure the Gain and Phase
margins:
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The phase margin on the plot can be red by measuring the distance between the graph at the crossover
frequency (6 rad/s)and −180◦. Using the same strategy, we can read the gain margin counting the difference
between the actual position of the plot and 0dB at the frequency where the phase crosses the −180◦ horizontal
line (around 14.5 rad/s):
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We can compare the Gain and Phase margins appearing on the plot by computing the matlab command:

[GM,PM ] = margin(kp ∗G)

Thus, we obtain:

• Gm = 1.2421 dB

• Pm = 70.3418◦

3.2 Lead-Lag controller

3.2.1 Give the controller and explain in details how did you compute it.

We want to compute a controller which respect these specifications:

• Input step disturbance rejection

• Steady-state error of 0.0625 rad for ramp disturbance

• Set the crossover frequency at ωc = 4 rad/s

• Minimum phase margin of 55◦

As we are considering the disturbance, we shall establish a relation between W (s) and E(s):

E(s)
W (s) = − G(s)

1 +G(s) ·Dc(s)
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A ramp disturbance can be translated asW (s) = 1
s2 , therefore, using the Final Value Theorem the steady-state

error can be computed as:

lim
t→∞

e(t) = lim
s→0

s·E(s) = lim
s→0

s·W (s)
{
− G(s)

1 +G(s) ·Dc(s)

}
= lim

s→0
s

1
s2

{
− G(s)

1 +G(s) ·Dc(s)

}
= 1
Kv

= 0.0625 rad

Thus, we find the velocity constant Kv = 1
0.0625 = 16 ,by rearranging the therms we obtain:

lim
s→0
−1
s

1
1

G(s) +Dc(s)
= 1
Kv
⇒ Kv = lim

s→0
s( s

G(s) +Dc(s)) = lim
s→0

sDc(s)

We want to design a Lead-lag Controller. As a result, the term Dc(s) will have the following from:

Dc(s) = K
1
sl

m∏
i=1

1 + αiτis

1 + τis

Moreover, we want the step input disturbance to be rejected. As the G(s) function already contain an
integrator we done on’t need to add in our Dc(s) controller. This means that we can set l = 0.
We can now combine the two previous equation to calculate the Gain K:

Kv = lim
s→0

sDc(s)G(s) = lim
s→0

sK
m∏
i=1

1 + αiτis

1 + τis
G(s) = K

3654.6
43.33 · 234.6 ⇒ K = 44.5

We will now analyse the Bode diagram with our new calculated lead-lag controller: Dc(s) = K = 44.5. And
then modify the values to obtain the correct crossover requency and phase margin.

As presented on the previous diagram, the graph need to be shifted around −12.6 dB upward to respect the
desired qualifications. We can see that the phase margin is around 78◦, which is already greater than 55◦. As
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a consequence, we don’t technically need to modify the margin. But for learning purposes, we will here lower
the phase by 23◦, in order to obtain a margin of exactly 55◦.

Those two modifications can be done by setting the correct value(s) of α in the Lead-lag compensator. With
the help of the equation given in the theory of the Lead-lag compensators in chapter 6, we have:

• Magnitude contribution,
√
c (not given in decibel) at ωc: c = [· · · ] = 1+(ατωc)2

1+(τωc)2

• Phase contribution, φ at ωc: φ = [· · · ] = arg(1 + α(τωc)2 + j(ατωc − τωc))

• We define p : p = tan(φ) = ατωc−τωc
1+α(τωc)2

• We know that a lead compensator correspond to α > 1 and a lag compensator correspond to α ∈ [0; 1]

As our graph need to be lifted in phase, we want to introduce a lead in our system. As a consequence, we
will choose α > 1. We need to solve this equation:

(p2 − c+ 1)α2 + 2p2cα+ p2c2 + c2 − c = 0

Rejecting the one solution that does not respect the α > 1 condition, we find α = 0.205 and τ = 1
ωc

√
1−c
c−α2 =

2.140.

Finally our controller take the final form:

Dc(s) = K
1 + ατs

1 + τs
= 44.5 · 1 + 2.140 · 0.205 · s

1 + 2.140 · s

3.2.2 Check your results (closed-loop bandwidth, phase margin).

We can now plot the Bode diagram of Dc(s)G(s) using our new lead compensator:
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The closed-loop bandwidth is defined as the frequency where the graph reaches the −3 dB value.
We can read the bandwidth directly on the graph: BW = 5.61 rad.

The given margin computed with Matlab using [GM,PM ] = margin(Dc ∗G) are:

• GM = 1.9307

• PM = 54.591

The plot and the Matlab calculations both confirm the exactitude of our developement.

3.2.3 Compute the modulus margin from the magnitude Bode diagram of the closed-loop
sensitivity function.

The modulus margin is related to the maximal value of the Bode plot of the closed loop sensitivity equation:
1

1+Dc(s)G(s)
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The Modulus Margin is computed by taking the inverse of the peak value red on the previous plot (note that
the value should be converted from decibel to standard units): MM = 1

10
6.31
20

= 0.484
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3.3 Comparison with cascade controller

3.3.1 Compare the tracking step response of the lead-lag controller and the cascade controller
(plot both responses in the same figure).
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3.3.2 Compare the disturbance step response of the lead-lag controller and the cascade con-
troller (plot both responses in the same figure).

Module 4: State-Space Method

4.1 State-Space Model

4.1.1 Give the state space equation of the system and the state space model in matrix form.

A =


−K2

gK
2
m

RmJm
− b

Jm
0 0 Ks

Jm

1 0 0 0
K2

gK
2
m

RmJm
+ b

Jm
0 0 −Ks(Jm+JBr)

JmJBr

0 0 1 0

 B =


KGKmKa
RmJm

0
−KGKmKa
RmJm

0



C =
[
0 1 0 1

]
D = 0
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4.1.2 Validate your model by comparison of the Bode diagram of the state-space model and
G(s) of the first module.

4.1.3 Is the system controllable? Why?

The matrix of controllability reads:

C =
[
B AB A2B A3B

]
The determinant of this matrix is

∣∣∣B AB A2B A3B
∣∣∣ = 4, 34 · 109 6= 0. As a result, the system is

controllable.

4.1.4 Is the system observable? Why?

The matrix of observability reads:

O =


C
CA
CA2

CA3



The determinant of this matrix is

∣∣∣∣∣∣∣∣∣
C
CA
CA2

CA3

∣∣∣∣∣∣∣∣∣ = 4, 1 · 104 6= 0. As a result, the system is observable.
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4.2 State-Space Controller Design

4.2.1 Give the codes for state-feedback controller design and the final numerical values of
the controller K.

After computing the poles of s2 + 2ζωns+ ω2
n, we obtained

• s1 = −5.6− 4.2i

• s2 = −5.6 + 4.2i

We chose the two fast poles shown below:

• -70

• -70

We compute K using the the following Matlab command:

P = [−70; 70;−5.6− 4.2i;−5.6 + 4.2i];
K = acker(A,B, P );

We obtain

K =
[
14.1124 65.6978 8.5074 −266.3642

]
4.2.2 Give the codes for state estimator design and the final numerical values for L.

We can obtain the estimator using the Matlab commands:

L = acker(A′, B′, 5 ∗ P )
L reads:

L =
[
2.6114 · 105 0.0546 · 105 −1.3414 · 105 −0.0476 · 105

]
4.2.3 Give the code for computing the feedforward gain and its final numerical value.

We can obtain the estimator using the Matlab commands:

Ccl = (C, 0, 0, 0, 0);
Acl = [A,−B ∗K;L′ ∗ C,A−B ∗K − L′ ∗ C];
Nb = −inv(Ccl ∗ inv(Acl) ∗ [B;B]);

N reads:

N = 0.0268

4.2.4 Give the state-space representation for the closed-loop system between r and y. Give
the numerical values of the transfer function.

The transfer function in zpk format reads:

T (s) = Ccl(sI−Acl)−1Bcl = 98 · (s+ 350)2 · (s2 + 56 · s+ 1225)
(s+ 350)2(s+ 43.36) · (s+ 0.009543) · (s2 + 6.776 · s+ 236.8) · (s2 + 56 · s+ 1225)
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4.2.5 Give the state-space representation for the closed-loop system between r and u. Give
the numerical values of the transfer function.

U(s) =
[
0 0 0 0 −K

]
(sI −Acl)−1Bcl +N

= 0.026815 · s(s+ 350)2 · (s+ 43.33) · (s2 + 6.82 · s+ 234.6) · (s2 + 56 · s+ 1225)
(s+ 350)2 · (s+ 43.36) · (s+ 0.009543) · (s2 + 6.776 · s+ 236.8) · (s2 + 56 · s+ 1225)

4.2.6 Plot the control signal u(t) and the output y(t) for a unit step reference signal.

The control signal reads as shown:

This is the output for a step reference signal:
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4.3 State-Space Controller with integrator

4.3.1 Give the codes and the numerical values for the augmented model.

We obtained the augmented model using the following Matlab sequence:

Z = [0;0;0;0];
Abarre = [A Z;-C 0];
Bbarre = [B; 0];

The result reads as sown below:

Z =


0
0
0
0

 A =


50.1462 0 0 327.4108 0
1.0000 0 0 0 0
50.1462 0 0− 530.1135 0

0 0 1.0000 0 0
0 −1.0000 0 −1.0000 0

 B =


18.0294

0
−18.0294

0
0



4.3.2 Give the codes for state-feedback controller design and the final controller K.

The codes for calculating K reads:

K = acker(Abarre,Bbarre,p);

This gives the following value for K:
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K = [0.8141 19.3933 0.4783 −19.3149 −45.2510]

4.3.3 Give the codes for state estimator design and the final gain L.

We obtained the augmented model using the following Matlab code:

L = acker(A’,C’,pe)

The result reads as sown below:

L = [24.7121 −9.3141 −182.7497 4.2264 0.0632]

4.3.4 Give the state-space representation for the closed-loop system between r and y. Give
the numerical values of the transfer function.

T (s) = 1.6538 · 105(s+ 75)3 · (s2 + 56 · s+ 1225)
(s+ 75)3(s+ 15)3(s2 + 11.2 · s+ 49)(s2 + 56 · s+ 1225)

4.3.5 Give the state-space representation for the closed-loop system between r and u. Give
the numerical values of the transfer function.

U(s) = −0.012382(s+ 75)3(s+ 43.33)(s+ 7.535 · 10−7)(s− 7.535 · 10−7)(s2 + 6.82 · s+ 234.6)(s2 + 56 · s+ 1225)
(s+ 75)3(s+ 15)3(s2 + 11.2 · s+ 49)(s2 + 56 · s+ 1225)

4.3.6 Plot the control signal u(t) and the output y(t) for a unit step reference signal.

The control signal reads as shown:

This is the output for a step reference signal:
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4.3.7 Compare the four methods: ZN method, cascade PID, loop shaping (with integrator)
and state space (with integrator) in terms of performance in tracking by superposition
of the time responses.
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4.3.8 Compare these methods in terms of the facility and clarity of the design method, their
advantages and disadvantages.

The Ziegler-Nicholson methods are easy to calculate and implement. Altough their implementation converges.
The transient response induces a large overshoot and a lot of oscillation. The result of the lead lag are a bit
better but they are a lot more complicated to compute.

The best result were achieved by the Cascade and the States Space controllers. Moreover the cascade
controller is easier to calculate than the State Space.
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	 Give the value of the ultimate gain and the ultimate period. 
	Give the parameters of the PID controller
	Plot the step response of the closed-loop system from the reference signal to the output
	 Plot the step response of the closed-loop system from the disturbance signal to the output.

	 Cascade Controller
	 Plot the step response of G1 and give the step information. From the step response, estimate the steady-state gain, the damping factor and the natural frequency of an approximate second-order model
	Give the reference model for the inner loop. Give the PID controller parameters of the inner loop. 
	Give the reference model for the outer loop. Give the proportional controller for the outer loop. 
	 Give the transfer function between R and Y in terms of Dc, Dc’ and G. Give also the transfer function with its numerical values in zpk format. 
	 Give the transfer function between W and Y in terms of Dc, Dc’ and G. Give also the transfer function with its numerical values in zpk format. 
	Plot the closed-loop output for tracking a step reference signal for the cascade controller and the ZN controller in the same figure. Plot the closed-loop output for the rejection of a step disturbance for the cascade controller and the ZN controller in the same figure. 

	Proportional controller
	Give the value of kP and explain how you compute it from the Bode diagram of G. Give the values of gain margin and phase margin using the Bode diagram of the open-loop transfer function. Check your results using the command margin of Matlab. 

	Lead-Lag controller
	Give the controller and explain in details how did you compute it. 
	Check your results (closed-loop bandwidth, phase margin). 
	Compute the modulus margin from the magnitude Bode diagram of the closed-loop sensitivity function. 

	Comparison with cascade controller 
	Compare the tracking step response of the lead-lag controller and the cascade controller (plot both responses in the same figure).
	Compare the disturbance step response of the lead-lag controller and the cascade controller (plot both responses in the same figure). 

	State-Space Model 
	Give the state space equation of the system and the state space model in matrix form. 
	Validate your model by comparison of the Bode diagram of the state-space model and G(s) of the first module. 
	 Is the system controllable? Why? 
	 Is the system observable? Why? 

	 State-Space Controller Design
	Give the codes for state-feedback controller design and the final numerical values of the controller K. 
	Give the codes for state estimator design and the final numerical values for L. 
	 Give the code for computing the feedforward gain and its final numerical value.
	 Give the state-space representation for the closed-loop system between r and y. Give the numerical values of the transfer function. 
	Give the state-space representation for the closed-loop system between r and u. Give the numerical values of the transfer function. 
	Plot the control signal u(t) and the output y(t) for a unit step reference signal. 

	State-Space Controller with integrator 
	Give the codes and the numerical values for the augmented model. 
	Give the codes for state-feedback controller design and the final controller K. 
	Give the codes for state estimator design and the final gain L. 
	Give the state-space representation for the closed-loop system between r and y. Give the numerical values of the transfer function. 
	 Give the state-space representation for the closed-loop system between r and u. Give the numerical values of the transfer function.
	Plot the control signal u(t) and the output y(t) for a unit step reference signal. 
	Compare the four methods: ZN method, cascade PID, loop shaping (with integrator) and state space (with integrator) in terms of performance in tracking by superposition of the time responses. 
	Compare these methods in terms of the facility and clarity of the design method, their advantages and disadvantages. 


